Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Chem ; 11: 1193030, 2023.
Article in English | MEDLINE | ID: covidwho-20245281

ABSTRACT

Coronavirus pandemic has been a huge jeopardy to human health in various systems since it outbroke, early detection and prevention of further escalation has become a priority. The current popular approach is to collect samples using the nasopharyngeal swab method and then test for RNA using the real-time polymerase chain reaction, which suffers from false-positive results and a longer diagnostic time scale. Alternatively, various optical techniques, namely, optical sensing, spectroscopy, and imaging shows a great promise in virus detection. In this mini review, we briefly summarize the development progress of vibrational spectroscopy techniques and its applications in the detection of SARS-CoV family. Vibrational spectroscopy techniques such as Raman spectroscopy and infrared spectroscopy received increasing appreciation in bio-analysis for their speediness, accuracy and cost-effectiveness in detection of SARS-CoV. Further, an account of emerging photonics technologies of SARS-CoV-2 detection and future possibilities is also explained. The progress in the field of vibrational spectroscopy techniques for virus detection unambiguously show a great promise in the development of rapid photonics-based devices for COVID-19 detection.

2.
Sens Actuators B Chem ; 371: 132445, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-1967138

ABSTRACT

With the frequent detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in dwellings and wastewater, the risk of transmission of environmental contaminants is of great concern. Fast, simple and sensitive sensors are essential for timely detecting infection and controlling transmission through environment fomites. Herein, we developed a Surface Enhanced Raman Scattering (SERS) aptasensor, which can realize ultrasensitive and rapid assay of SARS-CoV-2 viral particles. In this strategy, we designed a novel locking amplifier which is activated only in the presence of virus by aptamer recognition. The reaction process was carried out though one-pot method at 37 °C, which can save time and resources. In addition, magnetic beads used in reaction system can simplify operation, as well as provide ideas for developing biosensing robots via magnetic field. This SERS aptasensor can detect SARS-CoV-2 virus with a LOD of 260 TU/µL within 40 min in the linear range of 625-10,000 TU/µL. Therefore, this convenience, speediness, sensitivity, and selectivity of detection has great prospects in analyzing SARS-CoV-2 viral particles or other viruses in environment as well as monitoring of environmental virus sources.

SELECTION OF CITATIONS
SEARCH DETAIL